

International Quinoa Conference 2016:

Quinoa for Future Food and Nutrition Security in Marginal Environments

Dubai, 6-8 December 2016

www.quinoaconference.com

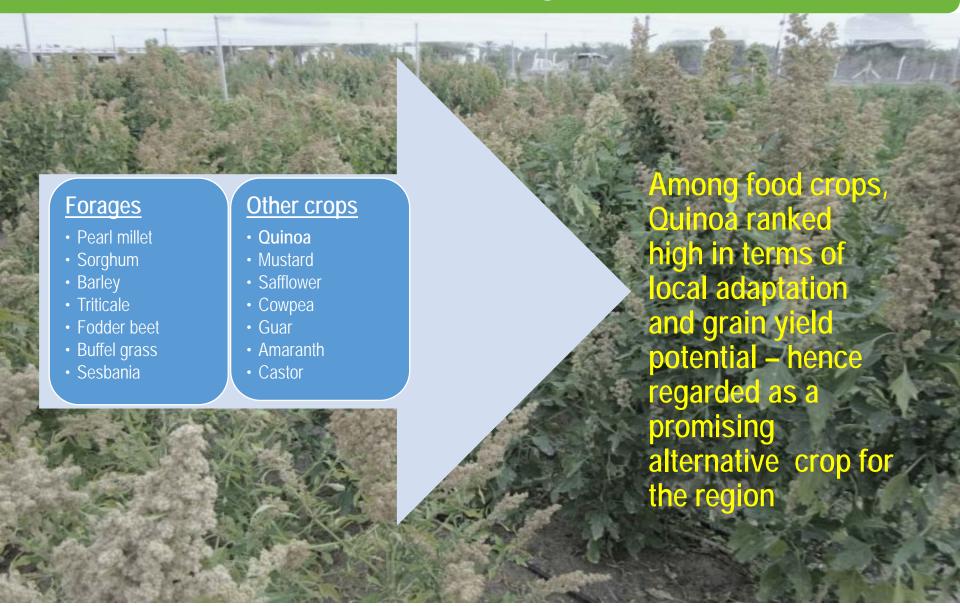
Effects of salinity on seed yield and nutritional quality of Quinoa

By: Kameswara Rao Nanduri, Mohammad Shahid, M, and Khalil Ur Rahman Butt

International Center for Biosaline Agriculture Presenter email: nkrao2003@Hotmail.com

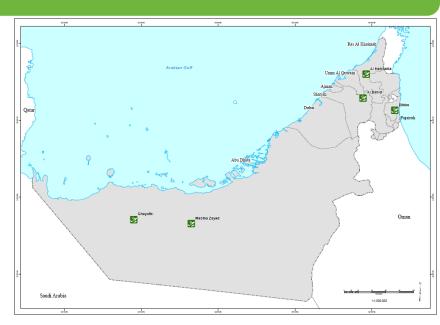
Outline

- Background Production systems in the UAE
- Quinoa R&D at ICBA
- Multi-location yield trials
- Growing environment and nutritional quality
- Conclusions


Production systems in the UAE

- Harsh climate severe limitation to productivity
- Scarcity of fresh water and increasing ground water salinity
 - ✓ Some 30-40% of the farms have groundwater salinity of >4dS/m
- Many of the currently grown major crops are waterthirsty (e.g. Alfalfa, Rhodes grass) and salt-sensitive (vegetables)
- Likely to become hotter and drier due to climate change - increased water scarcity and salinity further impacting agricultural production
- Diversification of production systems through introduction of new salt-tolerant and water-use efficient crops needed to sustain agricultural production

Crops investigated



Quinoa R&D at ICBA

Preliminary evaluation for 121 accessions adaptation and yield from USDA potential (2006-07) 20 top-**Evaluation of yield potential** yielding over two seasons (2007-09) accessions Mass Selection to improve 8 best-Yield Trials (2009-13) seed performing yield accessions 4 High yielding Q1, Q3, Q4, Q5 lines

1. Multi-location yield trials (2013-14)

- Locations: 5
 - ✓ Northern Emirates (3): Dibba, Hamraniah, Al Dhaid
 - ✓ Western region, Abu Dhabi (2): Ghayathi, Madinat Zayed
- Genotypes: 4 (Q1, Q3, Q4, Q5)
- Design: RCBD
- Plot size: 14-30 m²
- Irrigation water salinity 2-20 dS/m
- Sampled: 1 x 1 m
- Reps: 3
- Collaborators:
 - ✓ Ministry of Environment and Water (MOEW)
 - ✓ Abu Dhabi Farmer's Service Center (ADFSC)

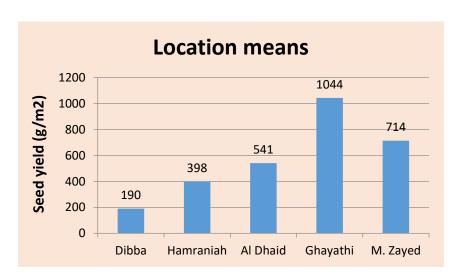
Line No.	Derived from
Q1	Ames 13727
Q3	Ames 13761
Q4	Ames 22157
Q5	NSL 106398

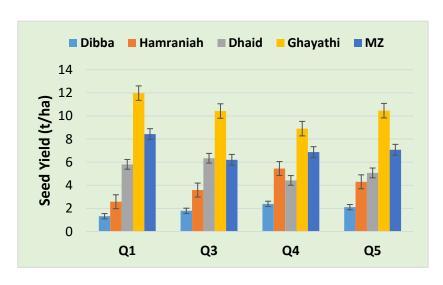
Soil and water characteristics of the farms

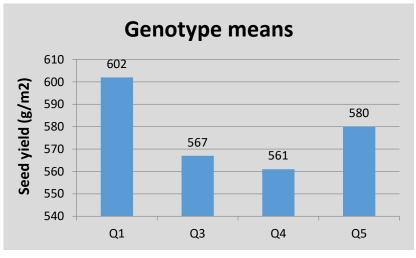
Northern Emirates: Agricultural Res. Stations with Varying biophysical environments

Location	Water			Soil			
	Salinity	Texture Class	рН	ECe (dS/m)	Clay	Silt	Sand
	(dS/m)						
Dibba	6.1	Sand	7.55	35.86	2.83	4.87	92.30
Hamraniah	4.5	Sandy loam	7.49	48.50	8.53	18.83	72.63
Al Dhaid	2.3	Loamy sand	8.34	2.49	4.20	9.30	86.50

Western Region: Abandoned farms - Soil and water quality rather poor to support the production of the traditionally grown forages and vegetables


Water quality -Variable	Unit	Tolerant	Madinat	Ghayathi	
		limit	Zayed		
EC w	dS/m	3	20.5	14.1	
Sodium (Na [†])	Meq/I	40	146.28	129.66	
Chloride (Cl ⁻)	Meq/I	30	172.5	108.5	
Calcium (Ca ⁺²)	Meq/I	25	52.56	14.58	
Magnesium (Mg ⁺²)	Meq/I	-	37.56	27.56	
Sulfate (SO4 ⁻²)	Meq/I	20	65.9	64.9	
Bicarbonate (HCO3 ⁻¹)	Meq/I	10	0.4	0.26	
Carbonate (CO3 ⁻²)	Meq/I	0.1	0	0	
SAR	mmoles/l x 0.5	10	21.79	28.25	
рН	-	6.0 - 8.5	6.92	7.32	




Multilocation trial - Seed Yields

- Significant differences among locations for seed and biomass yields (p>0.001)
- Differences among genotypes were insignificant (p>0.05)
- Mean seed yield of Locations: 1.9 t/ha in Dibba to 10.4 t/ha in Ghayathi
- Mean seed yield of genotypes: 5.6 t/ha in Q4 to 6.0 t/ha in Q1

✓ Grand mean: 5.8 t/ha

2: Effect of growing conditions on nutritional quality

Nutritional quality of seeds harvest from low to highly saline environments assessed

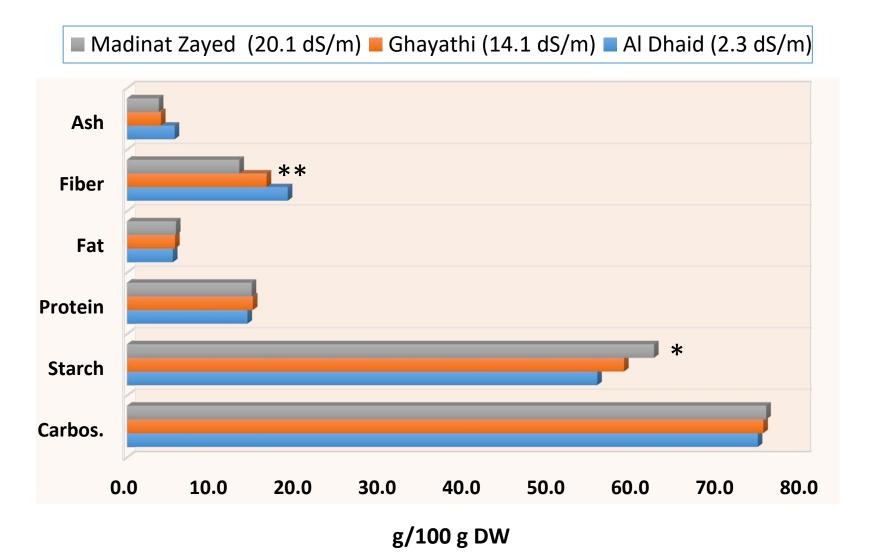
- Locations: 3
 - o Al Dhaid (2.3 dS/m)
 - o Ghayathi (14.1 dS/m)
 - o Madinat Zayed (20.1 dS/m)
- No. of Genotypes: 4 (Q1, Q3, Q4, Q5)
- Replicates: 3
- Parameters studied
 - Proximate composition
 - Amino acid content
 - Mineral content
- Methods/Protocols: Association of Official Analytical Chemists (AOAC, 1995)/Standard procedures
- Collaborator: McGill University, Canada

Results - Nutritional assays

Location	Line	Proximate composition (g/100 g DW)					Minerals (mg/100 g DW)								
Location	Line	Carbos.	Starch	Protein	Fat	Fiber	Ash	Na	K	Ca	Mg	Fe	Р	Cu	Zn
Al Dhaid	Q1 (Ames 13727)	74.6	55.5	14.4	5.3	19.1	5.7	56.4	1635.1	241.8	685.2	84.7	471.7	0.2	1.5
(2.3 dS/m)	Q3 (Ames 13761)	74.7	55.5	14.2	5.3	19.2	5.9	72.6	1652.3	296.4	710.9	97.4	453	0.3	1.6
	Q4 (Ames 22157)	74	53.8	14.1	5.8	20.2	6.1	60.1	1534.4	257.2	824.2	128.7	456.6	0.3	1.6
	Q5 (NSL 106398)	75.6	58	14.3	5.3	17.6	4.8	62	1412.9	179.8	572.5	68.6	435.1	0.6	1.3
	Mean	74.7	55.7	14.3	5.4	19.0	5.6	62.8	1558.7	243.8	698.2	94.9	454.1	0.4	1.5
Ghayathi	Q1 (Ames 13727)	74.6	57.7	15.4	5.4	17	4.6	141.9	1721	57.4	344.4	0.5	472.4	0.4	2.4
(14.1 dS/m)	Q3 (Ames 13761)	77.4	63.1	14.1	4.7	14.3	3.7	24.2	1280.5	39.3	283.1	2.8	406.6	0.4	2.3
	Q4 (Ames 22157)	73.5	53.3	15.3	6.6	20.2	4.6	328.4	1900.8	112.3	399.2	1.9	491.1	0.1	2.1
	Q5 (NSL 106398)	76	61.4	14.8	6	14.6	3.1	137.5	1008.6	81.1	228.6	7	441.9	0.2	1.9
	Mean	75.4	58.9	14.9	5.7	16.5	4.0	158.0	1477.7	72.5	313.8	3.1	453.0	0.3	2.2
Madinat Zayed	Q1 (Ames 13727)	75.6	60.2	14.8	5.8	15.4	3.8	111	1490.9	57.4	256	3.7	465.9	0.3	1.9
(20.1 dS/m)	Q3 (Ames 13761)	75.3	60.4	15.5	5.3	14.9	3.9	137.2	1233.2	64.7	321.9	14.6	545.6	0.2	1.5
	Q4 (Ames 22157)	77.7	66.7	14.1	4.6	11	3.5	96.3	1066.9	32.9	279.9	4.6	408.4	0.2	2.5
	Q5 (NSL 106398)	74.3	62.4	14.6	7.4	11.9	3.8	230.6	1327.8	63.5	334.7	2.4	437.4	0.3	2.1
	Mean	75.7	62.4	14.8	5.8	13.3	3.8	143.8	1279.7	54.6	298.1	6.3	464.3	0.3	2.0
LSD (0.05)		n.s.	5.14	n.s.	n.s.	3.37	n.s.	n.s.	n.s.	55.14	122.1	24.21	n.s.	n.s.	0.45

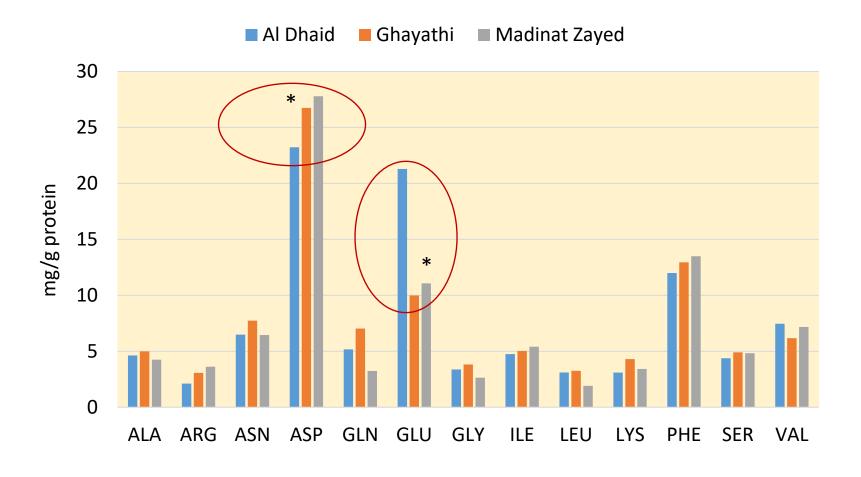
proximate composition & Mineral content

Amino acid	Amino acid content (mg/g Protein)									
Allillio aciu	Al Dhaid	Ghayathi	Madinat Zayed							
ALA	4.63	4.99	4.25							
ARG	2.11	3.07	3.62							
ASN	6.49	7.74	6.45							
ASP	23.23	26.74	27.79							
GLN	5.17	7.03	3.24							
GLU	21.29	9.99	11.07							
GLY	3.38	3.82	2.64							
LE	4.75	5.03	5.41							
LEU	3.11	3.26	1.91							
LYS	3.1	4.3	3.42							
PHE	11.99	12.95	13.49							
SER	4.38	4.91	4.83							
VAL	7.46	6.17	7.17							
LSD (0.05)	A.Acid	2.324								
	Location	1.117								
	A.acid x									

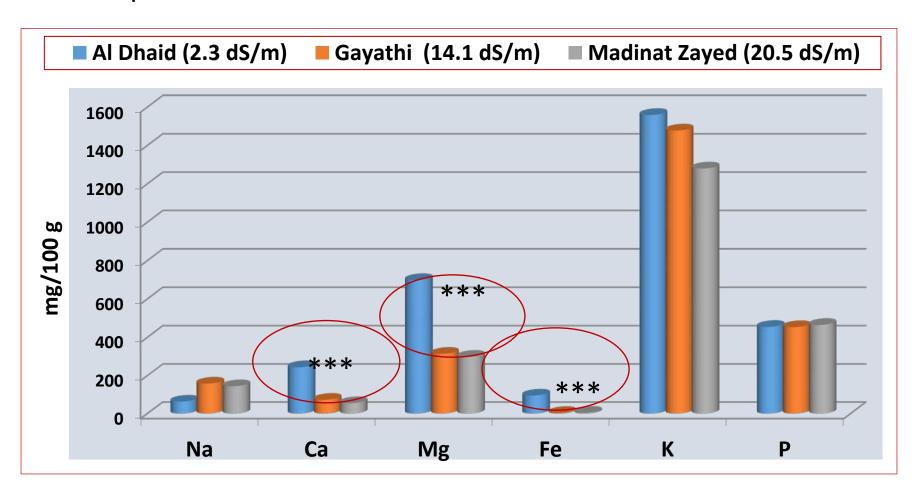

4.026

Location

Amino acid content


Nutritional quality - Proximate composition

Proximate composition of the seeds not greatly altered by growing environment


Nutritional quality – Amino acid content

Amino acid content of the seeds from the three locations largely similar except for Asparagine and Glutamine

Nutritional quality - Mineral content

Seeds harvested from Ghayathi and Madinat Zayed had higher Na and Zn content, but significantly lower levels of Ca, Fe compared the harvest from Al Dhaid

Conclusions

- Quinoa has good adaptation to the hyper-arid desert environments - excellent candidate for crop diversification in the UAE and other countries with similar climatic conditions
- Quinoa's ability to withstand high salinity confirmed - excellent potential as an alternative crop to rehabilitate salt-affected farms.
- Salt-stress has deeply altered the mineral composition, especially calcium, magnesium and Iron
- Further studies recommended in order to enhance our understanding of the response, especially to higher levels of salinity and help in selecting nutritionally stable genotypes

Northern Emirates, UAE

Western Region, Abu Dhabi Emirate, UAE

Thank you

