

International Quinoa Conference 2016:

Quinoa for Future Food and Nutrition Security in Marginal Environments

Dubai, 6-8 December 2016

www.quinoaconference.com

Quinoa introduction in West-Africa: experience of Burkina Faso

By: Abdalla Dao, Ph.D

Institute of Environment and Agricultural Research (Institut de l'Environnement et de Recherches Agricoles – INERA)

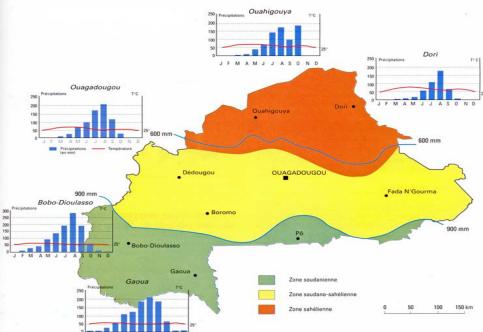
<u>adao@iwacci.edu.gh</u>

Introduction

Quinoa worldwide development in 2013 (Bazile and Baudron, 2015)

Introduction

UN Food and Agriculture Organization developed Technical
 assistance for the strengthening of the Food system of Quinoa
 project to introduce quinoa and promote its production and use as
 a staple food in Africa


In West-Africa, the countries targeted were: Burkina Faso,
 Cameroun, Niger, Senegal, Chad, Togo and Ghana

BURKINA FASO

Population: 17 million

Land area: 105,869 mi²

BURKINA FASO

Population: 17 million

Land area: 105,869 mi²

Introduction

- Quinoa, a nutritious cereal crop for millions of people throughout the Andes, could also play an important role in eradicating hunger, malnutrition and poverty in Burkina Faso
- With exceptional resistance to drought and poor soils, quinoa can successfully be grown in different agro-ecology zones of Burkina Faso
- Quinoa is a potential alternative export crop for Burkina Faso

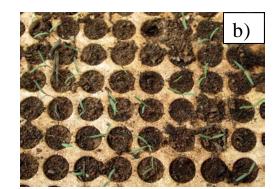
Materials and Methods

Materials and Methods

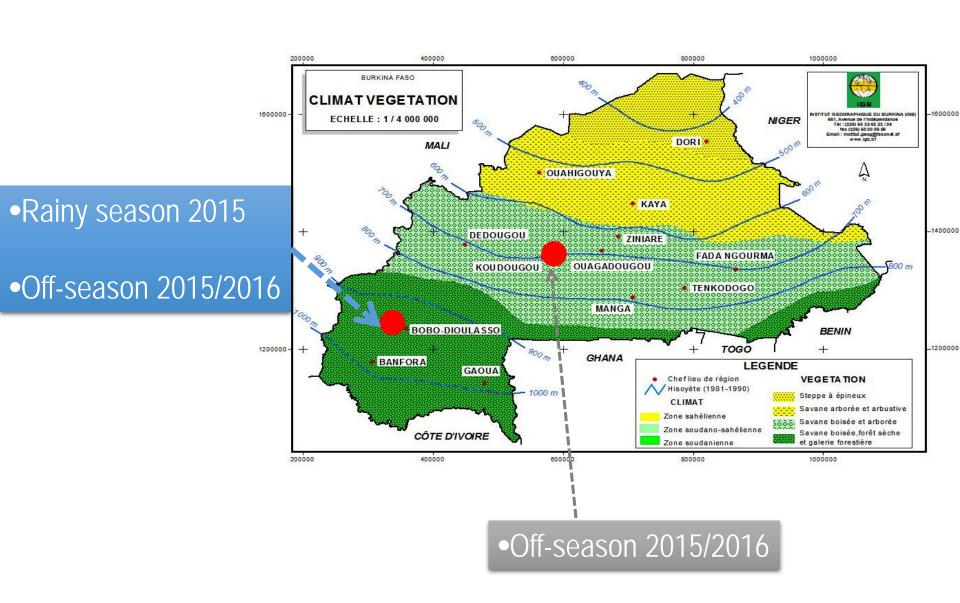
MORPHOLOGICAL AND AGRONOMIC PERFORMANCE OF QUINOA

Quinoa cultivars introduced


5 cultivars including *Blanca de junin, Amarilla Sacaca, Amarilla Marangani, Salecedo INIA, Kancolla* originated from Peru and 2 cultivars, *Puno* and *Titicaca*, obtained from University of Copenhague, Denmark were evaluated


Seed quality

The seeds were assessed in the laboratory of INERA for the presence of pathogen agents (fungi, insects, etc)


Seed germination

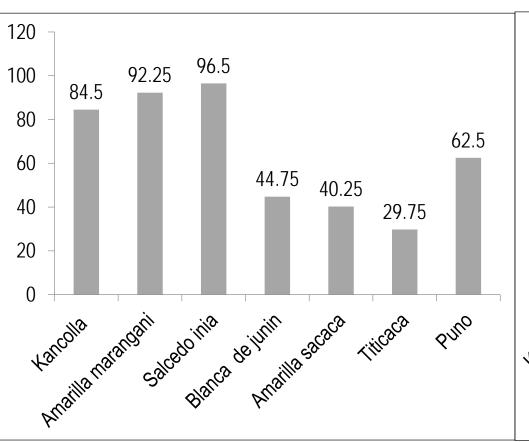
germination test was done with two substrates : a) blotting paper and b) soil

Experimental sites for field trials

Materials and Methods

ACCEPTABILITY OF QUINOA IN BURKINA FASO

IRSAT has developed local dishes with quinoa seeds

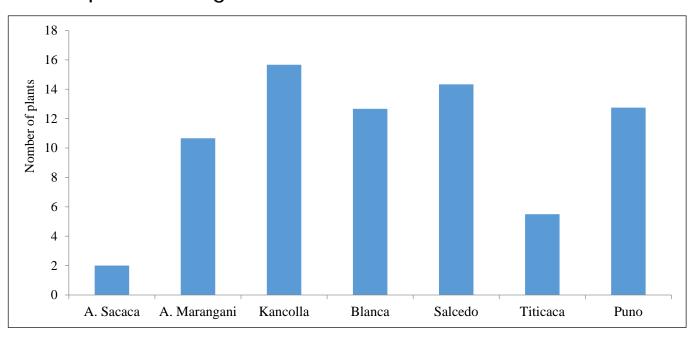

Quinoa grain processing

A sensory evaluation was done with 24 not trained consumers

Seed infestation by fungi

Champignon	Amarilla marangani	Amarilla sacaca	Blanca de junin	Salcedo inia	Kancolla	Titicaca	Puno	Total
Aspergillus spp	√	\checkmark	\checkmark	✓	\checkmark	\checkmark	√	7
Colletotrichum spp			\checkmark		\checkmark			2
Fusarium spp	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		6
Rhizoctonia spp	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			5
Pyriculatia spp			\checkmark	\checkmark				2
Corynespora spp		\checkmark	\checkmark		\checkmark			3
Ulocladium spp						\checkmark		1
Total	3	4	6	4	5	3	1	

Germination test



Paper substrate

Sand/Organic growing media

Evaluation in rainy season

Number of plant emerged was low

Average plant number across 3 replications in a RCBD

Cultivars were susceptible to lodging

Fungi diseases and pests were observed

Root and stem lodging

Pests (Lepidoptera) attack

Fungi diseases

Evaluation in off-season

Plant emerged of the cultivars from Peru was very low, varied from 1 to 4 per repetition, so their data were not used

Table 1: average performance (mean \pm s.e) of traits measured of *Titicaca* and *Puno*

Sites	Sari	a	Farako-Bâ		
Cultivars	Titicaca	Puno	Titicaca	Puno	
Flowering (days)	73.33 ± 2.0	67.33 ± 0.3			
Maturity (days)	96 ± 0.0	91 ± 0.0			
Plant height (cm)	62.3 ± 4.9	71.73 ± 4.3	73.067 ± 2.7	62.2 ± 1.3	
No. of branches per plant	15.2 ± 1.6	18.03 ± 0.5	14.133 ± 1.3	12.7 ± 0.2	
Panicle width (cm)	6.27 ± 0.8	7.23 ± 0.7	5.193 ± 0.2	3.76 ± 0.9	
Panicle length (cm)	23.6 ± 1.9	25.83 ± 1.9	32.117 ± 1.0	25.23 ± 0.7	
grain yield per plant (g/plant)	26.31 ± 2.9	30.70 ± 4.8	27.063 ± 3.3	17.09 ± 1.8	
1000 grains weight (g)	3.4	2.1	2	1.33	
Total grains weight harvested (g)	751.1	2457.9	420.9	1567.1	

Yield performance of both varieties were higher in Saria compared to Farako-Bâ

Dishes from quinoa grain processing

Table 2: dishes developed with quinoa by IRSAT

No	Name of the Dishes	Main constituents
1	Gnongon	quinoa, millet, cowpea, groundnut
2	Crepe with quinoa ¹	quinoa, eggs, milk
3	Crepe with quinoa ²	quinoa, rice, eggs, milk
4	Crepe with quinoa ³	quinoa, rice, wheat, eggs, milk
5	Biscuit with coconut	quinoa, coconut, eggs, milk,
6	Biscuit	quinoa, eggs, milk
7	Quinoa yogurt	quinoa, yogurt
8	Quinoa degue	quinoa, millet, yogurt
9	Rice of quinoa	quinoa (eaten with a side-sauce)
10	Quinoa with lentils	quinoa, lentils
11	Fried quinoa	quinoa (prepared in a sauce)
12	Bean with quinoa	quinoa, bean
13	Tô of guinga	guinga (eaten with a side-sauce)

Gnongon with a side sauce

Crepe with quinoa

Sensory evaluation

Table 3: result of hedonic test with 9 dishes developed with quinoa seeds

Rank	Dish names	Very good	Good	Acceptable	Not appreciation
1	Crepe with quinoa	83.33	16.67	0.00	0.00
2	Gnongon	62.50	33.33	4.17	0.00
3	Quinoa with lentils	62.5	29.17	4.17	4.17
4	Quinoa yogurt	58.33	16.67	0.00	25.00
5	Quinoa degue	50.00	16.67	8.33	25.00
6	Quinoa biscuit with coconut	45.83	33.33	4.17	12.50
7	Rice of quinoa	25.00	54.17	4.17	16.67
8	Quinoa with tomato side-sauce	20.83	41.67	16.67	20.83
9	Quinoa biscuit	12.50	50.00	16.67	20.83

Capacity building in quinoa production

Thirty (30) participants composed of extension agents, seed growers and famers received a training on quinoa production technique, harvest and post-harvest operations

Conclusions

- The production of quinoa is feasible in Burkina Faso if appropriate early-maturing cultivars, and agronomic practices to control weed and diseases are used
- Quinoa can be easily process to some of the local dishes which are appreciated, population is likely to adopt quinoa although others factors influencing the adoption like socioeconomic factors need to be considered
- Agribusiness opportunities and market-oriented development for quinoa in Burkina Faso need to be explored
- Forum for Scientific Research and Technological Innovations (FRSIT),
 November 19-26, 2016, helped to raise public awareness on quinoa

Acknowledgment

CO-AUTHORS

Dr Sanou Jacob, INERA

Yaméogo Charlotte, IRSAT

Kando Christine, IRSAT

Bakoané Alexis, SNS

Traoré Soulemayne, FAO-BF

Dr Dagnoko Mariatou, FAO-RAF

Dr Bazile Didier, FAO-CIRAD